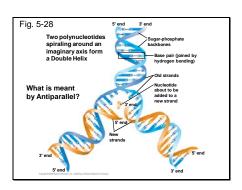
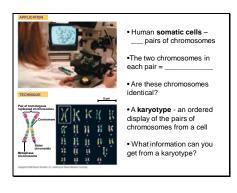
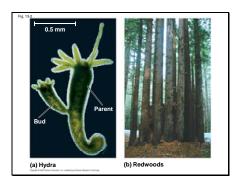


Slide 2


Key Terms and Definitions 1 Genome Chromosome Gene Locus Genotype Phenotype Phenotype Heredity Variation Cryptic 280 Favos Bargain Commage

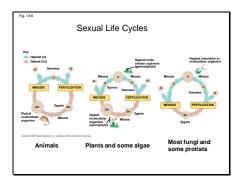


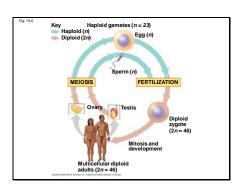
Slide 5


DNA inherited by organisms lead to specific traits

Which of the following illustrate genotype? Phenotype?

Nucleotide #17 - Adenine (A) is replaced by Thymine (T), resulting in a Val for Glu substitution at amino acid #6.


Slide 8


Key Terms and Definitions 2 Life cycle Genetic inheritance Asexual reproduction Clone Sexual reproduction Gametes Fertilization Somatic cells Allele

Slide 10

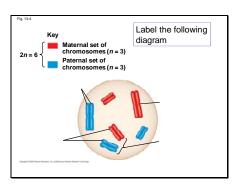
Slide 12

The Animal Life Cycle

- $\bullet\,$ The sex chromosomes are called X and Y
- Human females have a homologous pair of X chromosomes (XX)
- Human males have one X and one Y chromosome
- The 22 pairs of chromosomes that do not determine sex are called **autosomes**

The Animal Life Cycle

- A diploid cell (2n) has two sets of chromosomes
- n = # of chromosomes in a gametes
- For humans, the diploid number is 46 (2n = 46)


 (Fruit flies 2n = 8, Dogs 2n = 78)

Polyploidy = more than 2 sets of chromosomes (common in plants)

Are humans ever polyploids?

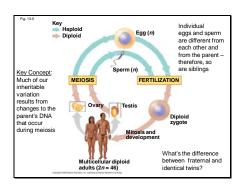
veright © 2008 Pearson Education Inc., rublishing as Pearson Benjamin Commings

Slide 14

Slide 15

The Animal Life Cycle

- A gamete (sperm or egg) contains a single set of chromosomes, and is haploid (n)
- For humans, the haploid number is 23 (n = 23)
- Each set of 23 consists of 22 autosomes and a single sex chromosome
- In an unfertilized egg (ovum), the sex chromosome is X
- In a sperm cell, the sex chromosome may be either X or Y

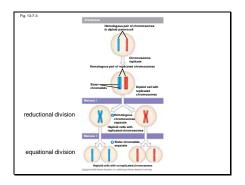


The Animal Life Cycle

- Fertilization is the union of gametes (the sperm and the egg)
- The fertilized egg is called a zygote and has one set of chromosomes from each parent
- The zygote produces somatic cells by _ and develops into an adult

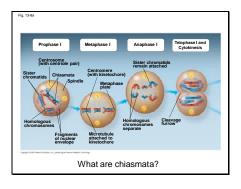
Converience C 2008 Persona Education Inc., multiplinary a Pensona Benismin Committee

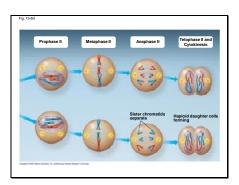
Slide 17

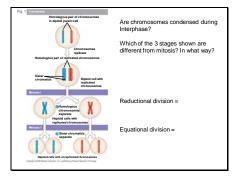


Slide 18

The BIG PICTURE of Meiosis

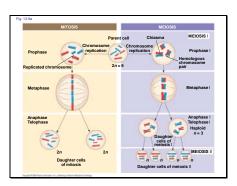

- · One Interphase just like Mitosis
 - G1, S-Phase, G2
 - diploid 46 chromosomes replicate to form 92 sisters joined in pairs
- Followed by Two Cell Divisions instead of One
 - In meiosis I, homologous chromosomes separate resulting in two haploid daughters with 46 sisters joined in 23 pairs
 - it is called the reductional division
 - In meiosis II, sister chromatids separate resulting in four haploid daughters with 23 unjoined chromosomes (much like mitosis)
 - it is called the **equational division**


Slide 20


Remind me what prophase is again......

Remind me what telophase is again......

Slide 23

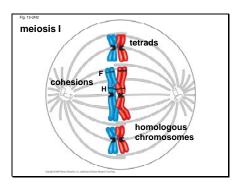


A Comparison of Mitosis and Meiosis

- Mitosis conserves the number of chromosome sets, producing cells that are genetically identical to the parent cell
- Meiosis reduces the number of chromosomes sets from two (diploid) to one (haploid), producing cells that differ genetically from each other and from the parent cell
- The mechanism for separating sister chromatids is virtually identical in meiosis II and mitosis

Conversable C. 2008 Persona Education Inc., mublishing as Pensona Resistantia Commission

Slide 26


Slide 27

Three events are unique to meiosis, and all three occur in meiosis I:

Formation of tetrads at the metaphase plate

Synapsis (cohesion) and crossing over amongst 4 sisters

Separation of homologous chromosomes

Slide 29

Remember Our Key Concept:

- Much of our inheritable variation results from changes to the parent's DNA that occur during meiosis
- These changes occur in both parents and are then combined at fertilization to create most of the variation that arises in each generation

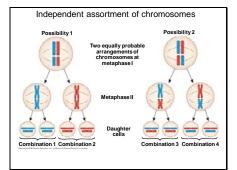
opyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Slide 30

Concept 13.4: Genetic variation produced in sexual life cycles contributes to evolution

- Mutations (changes in an organism's DNA) are the primary source of genetic diversity
- Mutations create different versions of genes called <u>alleles</u> (which reside on homologous chromosomes)
- Reshuffling of alleles during sexual reproduction produces genetic variation

	 	 	 	_
	 	 	 	_
	 	 	 	_

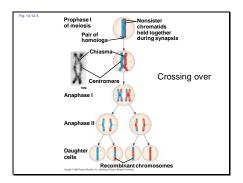

Origins of Genetic Variation Among Offspring

Three mechanisms contribute to genetic variation:

- Independent assortment of chromosomes
- Crossing over
- Random fertilization

The same and the s

Slide 32



Slide 33

Independent Assortment of Chromosomes

- Homologous pairs of chromosomes orient randomly at metaphase I of meiosis
- In independent assortment, each pair of chromosomes sorts maternal and paternal homologues into daughter cells independently of the other pairs
- The number of combinations possible when chromosomes assort independently into gametes is 2^n , where n is the haploid number
- For humans (n = 23), there are more than 8 million (2²³) possible combinations of chromosomes

Slide 35

Crossing Over

- Crossing over produces recombinant chromosomes, which combine genes inherited from each parent
- Crossing over begins very early in prophase I, as homologous chromosomes pair up gene by gene
- In crossing over, homologous portions of two nonsister chromatids trade places
- Crossing over contributes to genetic variation by combining DNA from two parents into a single chromosome

opyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Slide 36

Random Fertilization

- Random fertilization adds to genetic variation because any sperm can fuse with any ovum (unfertilized egg)
- The fusion of two gametes (each with 8.4 million possible chromosome combinations from independent assortment) produces a zygote with any of about 70 trillion diploid combinations

The Evolutionary Significance of Genetic Variation Within Populations

- Natural selection results in the accumulation of genetic variations favored by the environment
- Sexual reproduction contributes to the genetic variation in a population, which originates from mutations

The same and the s

•	 	 		 	